Data sheet

Seated valves
 VRB 3, VRG 3

Description

Ordering

** The 3-way valve can be used as a 2-way valve by using the:

- closing plug (int. thread) or - closing nut (ext. thread) (see accessories below)

VRB, VRG valves provide a quality, cost effective solution for most water and chilled applications. These valves may be used with glycol concentrations of up to 50%.

VRG 3 valves: Grey cast iron (GG-25) with external thread.

VRB 3 valves: Red bronze (Rg 5) with internal or external thread.

Main data:

- PN 16
- DN 15-50
- Connection: internal or external thread
- Suitable for water or glycolic water $2\left(-10^{*}\right) . . .120^{\circ} \mathrm{C}$
* At temperatures from $-10^{\circ} \mathrm{C}$ till $+2^{\circ} \mathrm{C}$ use stem heater.
- Suitable for use with $\operatorname{AMV}(E) 15,16,25,35$, AMV(E) 25 SU/SD and AMV 323, 423, 523 actuators
- Compliance with PED directive 97/23/EC.

3 - way valves (2-way valves**)

Dimensions DN	$\begin{gathered} \mathrm{k}_{\mathrm{vs}} \\ \mathrm{~m}^{3} / \mathrm{h} \end{gathered}$	Code No.		
		Int. thread - VRB 3	Ext. thread - VRB 3	Ext. thread - VRG 3
15	0.63	065B1411	065B1311	065B1211
	1.0	065B1412	065B1312	065B1212
	1.6	065B1413	065B1313	065B1213
	2.5	065 B1414	065 B1314	$065 B 1214$
	4.0	065 B1415	065 B1315	065 B 1215
20	6.3	065B1420	065B1320	065B1220
25	10	065B1425	065B1325	065B1225
32	16	065B1432	065B1332	065B1232
40	25	065B1440	065B1340	065B1240
50	40	065B1450	065B1350	065B1250

Accessories**

Closing plug with gasket for VRB int. thread (GG 25)

Type	Code No.
Closing plug with gasket DN 15	$\mathbf{0 6 5 Z 7 0 2 5}$
Closing plug with gasket DN 20	$\mathbf{0 6 5 Z 7 0 2 6}$
Closing plug with gasket DN 25	$\mathbf{0 6 5 Z 7 0 2 7}$
Closing plug with gasket DN 32	$\mathbf{0 6 5 Z 7 0 2 8}$
Closing plug with gasket DN 40	$\mathbf{0 6 5 Z 7 0 2 9}$
Closing plug with gasket DN 50	$\mathbf{0 6 5 Z 7 0 3 0}$

Closing nut with gasket for VRB / VRG ext. thread (GG 25)

Type	Code No.
Closing nut with gasket DN 15	$\mathbf{0 6 5 Z 7 0 0 1}$
Closing nut with gasket DN 20	$\mathbf{0 6 5 Z 7 0 0 2}$
Closing nut with gasket DN 25	$\mathbf{0 6 5 Z 7 0 0 3}$
Closing nut with gasket DN 32	$\mathbf{0 6 5 Z 7 0 0 4}$
Closing nut with gasket DN 40	$\mathbf{0 6 5 Z 7 0 0 5}$
Closing nut with gasket DN 50	$\mathbf{0 6 5 Z 7 0 0 6}$

Data sheet

Seated valves VRB 3, VRG 3

Ordering (continued)

1) At temperatures from $-10^{\circ} \mathrm{C}$ till $+2^{\circ} \mathrm{C}$ use stem heater.
${ }^{2)}$ - Stuffing box

- Gland ring
- Instructions

Accessories - 3 tailpieces internal thread for VRB / VRG ext. thread (GGG 50)

$R p$	DN	Code No.
$1 / 2$	15	065B4107
$3 / 4$	20	065B4108
1	25	065B4109
$11 / 4$	32	$\mathbf{0 6 5 B 4 1 1 0}$
$11 / 2$	40	065B4111
2	50	065B4112

Accessories - stem heater ${ }^{11}$

Type	Code No.
Stem heater 24 V (AMV/AME 15, 16, 25, 35 and valves DN 15-50)	$\mathbf{0 6 5 B 2 1 7 1}$

Spare parts - stuffing box ${ }^{2)}$

Type	Code No.
For valves VRB / VRG	065 B0008
DN 15-50	

Technical data

Nominal pressure	PN 16
Control characteristic	LOG: port A-AB; LIN: port B-AB
Medium	Circulation water / Glycolic water up to 50%
Medium temperature	$2(-10) \ldots 120^{\circ} \mathrm{C}$ (from $-10^{\circ} \mathrm{C} \ldots+2^{\circ} \mathrm{C}$ with stem heater)
Control range	$\mathrm{K}_{\mathrm{VS}} 0.63:$ min. $30: 1 / \mathrm{k}_{\text {ss }} 1.0-4.0:$ min. $50: 1 /$ DN $20-\mathrm{DN} 50:$ min. $100: 1$
Connection	VRB 3: internal thread DIN 2999,
	VRB 3, VRG 3: external thread DIN ISO 228/1

Material:

VRG 3

Body	Grey cast iron EN-GJL-250 (GG-25)
Spindle	Stainless steel
Cone	Brass
Gasket	EPDM

VRB 3

Body	Red bronze 2.1096.1 (RG5)
Spindle	Stainless steel
Cone	Brass
Gasket	EPDM

Leakage loss at closed valve

2 - way valves (A-AB)	Max. 0.05% of $k_{v s}$
3 - way valves (A-AB)	Max. 0.05% of $k_{v s}$ $(B-A B)$
Max. 1% of $k_{v s}$	

Pressure temperature diagram

Maximum allowed operating pressure as a function of medium temperature.

Data sheet
Seated valves VRB 3, VRG 3

Max. closing pressure and recommended Δp (VRB / VRG)

Valve				Actuator type				
DN	Int. thread	Ext. thread	Stroke	$\begin{gathered} \mathrm{AMV}(\mathrm{E}) 15 \\ 500 \mathrm{~N} \end{gathered}$	$\begin{gathered} \text { AMV(E) } 16 \\ 300 \mathrm{~N} \end{gathered}$	$\begin{gathered} \text { AMV(E) } 25-1000 \mathrm{~N} \\ \mathrm{AMV}(\mathrm{E}) 25 \mathrm{SU} / \mathrm{SD}-450 \mathrm{~N} \end{gathered}$	$\begin{gathered} \text { AMV(E) 35, AMV } 323 \\ 600 \mathrm{~N} \end{gathered}$	$\begin{gathered} \text { AMV } 423,523 \\ 1200 \mathrm{~N} \end{gathered}$
	ISO 7/1	ISO 228/1		max. closing pressure (bar)				
15	$\mathrm{R}_{\mathrm{p}} 1 / 2$	G 1	10	16	9	16 [16]	16	16
20	$\mathrm{R}_{\mathrm{p}}{ }^{3 / 4}$	G $111 / 4$	15	11	4	16 [10]	13	16
25	$\mathrm{R}_{\mathrm{p}} 1$	G $111 / 2$	15	6	2	16 [5]	8	16
32	$\mathrm{R}_{\mathrm{p}} 11 / 4$	G 2	15	3	1	9.0 [2.5]	5	12
40	$\mathrm{R}_{\mathrm{p}} 11 / 2$	G 21/4	15	2	-	6.0 [2]	3	8
50	$\mathrm{R}_{\mathrm{p}} 2$	G 23/4	15	1	-	3.0 [0.5]	2	5

NOTE:

Max. $\Delta \mathrm{p}$ is the physical limit of differential pressure the valve will close against.

The recommended $\Delta \mathrm{p}$ is based on the generation of noise, plug erosion etc.
Max. recommended Δp is 4 bar. If max. closing
pressure is smaller than 4 bar than the recommended Δp is the same as closing Δp.

Values in parantheses [] are based on the force of the actuator AMV(E) 25 SU/SD only.

Valve characteristics

Valve characteristics \log (2-way)

Valve characteristics log/lin (3-way)

Data sheet

Seated valves VRB 3, VRG 3

Installation

Hydraulic connections

Mount according to flow direction as indicated on valve body, $A B$ is always the outlet port; inlets are A (two port) or A and B (three port).

Valve mounting
Before mounting the valve be sure that the pipes are clean and free from swarf. It is essential that the pipes are lined up squarely with the valve at each connection and that they are free from vibrations. Install the motorized control valves with the actuator in a vertical or horizontal position but not upside down.
Leave sufficient clearance to facilitate the dismantling of the actuator from the valve body for maintenance purposes.
The valve must not be installed in an explosive atmosphere or at an ambient temperature higher than $50^{\circ} \mathrm{C}$ or lower than $2^{\circ} \mathrm{C}$. It must not be subject to steam jets, water jets or dripping liquid.

Note that the actuator may be rotated up to 360° with respect to the valve body by loosening the retaining fixture. After this operation retighten.

Hydraulic diagrams for applications of 3-way mixing valves

Note the valve must only be used as a mixing valve, and is not suitable for diverting (with one inlet and two outlet ports). Where this function is required, the valve should be mounted in the return line, as Fig. 2.

Note that if the pump is installed before the A port of the below valve arrangement, then excessive valve hammering will occur thus causing an overload of the actuator.

Fig. 1 Mixing valve used in mixing application.

Fig. 2 Mixing valve used in diverting application.

Disposal

The valve must be dismantled and the elements sorted into various material groups before disposal.

Data sheet

Control valve sizing diagram for fluids

Control valve sizing diagram for fluids

 (continued)
Examples

1 For fluids with specific gravity of 1 (e.g. water)

Design data:
Flow rate: $6 \mathrm{~m}^{3} / \mathrm{h}$
System pressure drop: 55 kPa
Locate the horizontal line representing a flow rate of $6 \mathrm{~m}^{3} / \mathrm{h}$ (line A-A). The valve authority is given by the equation:
Valve authority, $a=\frac{\Delta p 1}{\Delta p 1+\Delta p 2}$

Where:
$\Delta \mathrm{p} 1=$ pressure drop across the fully open valve
$\Delta \mathrm{p} 2=$ pressure drop across the rest of the circuit with a full open valve

The ideal valve would give a pressure drop equal to the system pressure drop (i.e. an authority of 0.5):

$$
\begin{aligned}
& \text { If } \Delta \mathrm{p} 1=\Delta \mathrm{p} 2 \\
& \mathrm{a}=\Delta \mathrm{p} 1 / 2^{*} \Delta \mathrm{p} 1=0.5
\end{aligned}
$$

In this example an authority of 0.5 would be given by a valve having a pressure drop of 55 kPa at that flow rate (point B). The intersection of line A-A with a vertical line drawn from B lies between two diagonal lines; this means that no ideally-sized valve is available. The intersection of line A-A with the diagonal lines gives the pressure drops stated by real, rather than ideal, valves. In this case, a valve with kvs 6.3 would give a pressure drop of 90.7 kPa (point C):
hence valve authority $=\frac{90.7}{90.7+55}=0.62$
The second largest valve, with kvs 10 , would give a pressure drop of 36 kPa (point D):
hence valve authority $=\frac{36}{36+55}=0.395$
Generally, for a 3 port application, the smaller valve would be selected (resulting in a valve authority higher than 0.5 and therefore improved controlability). However, this will increase the total pressure and should be checked by the system designer for compatibility with available pump heads, etc. The ideal authority is 0.5 with a preferred range of between 0.4 and 0.7.

2 For fluids with specific gravity different from 1

Design data:
Flow rate: $6 \mathrm{~m}^{3} / \mathrm{h}$ of fluid, S.G. 0.9
System pressure drop: 10 kPa
For this example, the left hand axis of the diagram must be ignored. Starting from the RH axis, the flow rate of $6 \mathrm{~m}^{3} / \mathrm{h}$ is located (point E). The intersection of the diagonal line from point E with a vertical line from S.G. $=0.9$ gives the starting point for the effective flow rate line F-F. The process then continues as for Example 1, so 10 kPa intersects F-F nearest to the kvs 16 diagonal. The intersection of $\mathrm{F}-\mathrm{F}$ with kvs 16 gives a valve pressure drop of 12.7 kPa (point G).

Data sheet
Seated valves VRB 3, VRG 3

Dimensions

$V R B / V R G+A M V 323 / 423 / 523$

